Algorithms Analysis

Lecture 6 Quicksort

Quick Sort

Divide and Conquer

Quick Sort

Partition set into two using randomly chosen pivot

sort the first half.

sort the second half.

Quick Sort

Glue pieces together.

14,23,25,30,31,52,62,79,88,98

- Quicksort pros [advantage]:
 - Sorts in place
 - Sorts O(n lg n) in the average case
 - Very efficient in practice , it's quick

- Quicksort cons [disadvantage]:
 - Sorts $O(n^2)$ in the worst case
 - And the worst case doesn't happen often ... sorted

- Another divide-and-conquer algorithm:
- Divide: A[p...r] is partitioned (rearranged) into two nonempty subarrays A[p...q-1] and A[q+1...r] s.t. each element of A[p...q-1] is less than or equal to each element of A[q+1...r]. Index q is computed here, called **pivot**.
- Conquer: two subarrays are sorted by recursive calls to quicksort.
- Combine: unlike merge sort, no work needed since the subarrays are sorted in place already.

- The basic algorithm to sort an array A consists of the following four easy steps:
 - If the number of elements in A is 0 or 1, then return
 - Pick any element **v** in A. This is called the **pivot**
 - Partition A-{v} (the remaining elements in A) into two disjoint groups:
 - $A_1 = \{ x \in A \{ v \} \mid x \le v \}$, and
 - $A_2 = \{ \boldsymbol{x} \in A \{ \boldsymbol{v} \} \mid \boldsymbol{x} \geq \boldsymbol{v} \}$
 - return
 - { quicksort(A_1) followed by v followed by quicksort(A_2)}

- Small instance has $n \leq 1$
 - Every small instance is a sorted instance
- To sort a large instance:
 - select a pivot element from out of the *n* elements
- Partition the *n* elements into 3 groups left, middle and right
 - The middle group contains only the pivot element
 - All elements in the left group are \leq pivot
 - All elements in the right group are \geq pivot
- Sort left and right groups recursively
- Answer is sorted left group, followed by middle group followed by sorted right group

Quicksort Code

```
P: first element
r: last element
Quicksort(A, p, r)
{
    if (p < r)
    {
        q = Partition(A, p, r)
        Quicksort(A, p , q-1)
        Quicksort(A, q+1 , r)
    }
}
```

• Initial call is **Quicksort**(A, 1, n), where n in the length of A

Partition

- Clearly, all the action takes place in the partition() function
 - Rearranges the subarray in place
 - End result:
 - Two subarrays
 - All values in first subarray \leq all values in second
 - Returns the index of the "pivot" element separating the two subarrays

Partition Code

```
Partition(A, p, r)
{
    x = A[r]
                              // x is pivot
     i = p - 1
     for j = p to r - 1
     {
          do if A[j] <= x
               then
               {
                 i = i + 1
                 exchange A[i] \leftrightarrow A[j]
               }
     }
                                 partition () runs in O(n) time
     exchange A[i+1] \leftrightarrow A[r]
     return i+1
```

}

Partition Example $A = \{2, 8, 7, 1, 3, 5, 6, 4\}$

i pj				r	pi	j						r
28	7 1	3	5 6	4	2	8	7	1	3	5	6	4
рi	j			r	pi			j				r
28	7 1	3	56	4	2	8	7	1	3	5	6	4
n i		i		r	n		i	-		i		r
2 1	78	3	56	4	2	1	3	8	7	5	6	4
р	i		j	r	p		i					r
2 1	38	7	56	4	2	1	3	8	7	5	6	4

 p
 i
 r

 2
 1
 3
 4
 7
 5
 6
 8

Partition Example Explanation

- Red shaded elements are in the first partition with values $\leq x$ (pivot)
- Gray shaded elements are in the second partition with values $\geq x$ (pivot)
- The unshaded elements have no yet been put in one of the first two partitions
- The final white element is the pivot

Choice Of Pivot

Three ways to choose the pivot:

- Pivot is **rightmost** element in list that is to be sorted
 - When sorting A[6:20], use A[20] as the pivot
 - Textbook implementation does this
- Randomly select one of the elements to be sorted as the pivot
 - When sorting A[6:20], generate a random number r in the range [6, 20]
 - Use A[r] as the pivot

Worst Case Partitioning

- The running time of quicksort depends on whether the partitioning is balanced or not.
- $\Theta(n)$ time to partition an array of *n* elements
- Let T(n) be the time needed to sort *n* elements
- T(0) = T(1) = c, where c is a constant
- When n > 1, - $T(n) = T(||eft|) + T(|right|) + \Theta(n)$
- T(n) is maximum (worst-case) when <u>either |left| = 0 or |right| = 0</u> following each partitioning

Worst Case Partitioning

Figure 8.2 A recursion tree for QUICKSORT in which the PARTITION procedure always puts only a single element on one side of the partition (the worst case). The resulting running time is $\Theta(n^2)$.

Worst Case Partitioning

• Worst-Case Performance (unbalanced):

$$- T(n) = T(1) + T(n-1) + \Theta(n)$$

• partitioning takes $\Theta(n)$

=
$$\left[\sum_{k=2 \text{ to } n} k\right] + n = \Theta(n^2)$$
 $\sum_{k=1}^n k = 1 + 2 + ... + n = n(n+1)/2 = \Theta(n^2)$

- This occurs when
 - the input is completely sorted
- or when
 - the pivot is always the smallest (largest) element

Best Case Partition

 When the partitioning procedure produces two regions of size n/2, we get the a balanced partition with best case performance:

$$- T(n) = 2T(n/2) + \Theta(n) = \Theta(n \lg n)$$

• Average complexity is also $\Theta(n \lg n)$

Best Case Partitioning

Figure 8.3 A recursion tree for QUICKSORT in which PARTITION always balances the two sides of the partition equally (the best case). The resulting running time is $\Theta(n \lg n)$.

- Assuming random input, average-case running time is much closer to Θ(n lg n) than Θ(n²)
- First, a more intuitive explanation/example:
 - Suppose that partition() always produces a 9-to-1 proportional split. This looks quite unbalanced!
 - The recurrence is thus:

 $T(n) = T(9n/10) + T(n/10) + \Theta(n) = \Theta(n \lg n)?$

[Using recursion tree method to solve]

 $T(n) = T(n/10) + T(9n/10) + \Theta(n) = \Theta(n \log n)!$

 $\Theta(n \lg n)$

 $\log_2 n = \log_{10} n / \log_{10} 2$

- Every level of the tree has cost cn, until a boundary condition is reached at depth $\log_{10} n = \Theta(\lg n)$, and then the levels have cost at most cn.
- The recursion terminates at depth $\log_{10/9} n = \Theta(\lg n)$.
- The total cost of quicksort is therefore O(n lg n).

- What happens if we bad-split root node, then good-split the resulting size (*n*-1) node?
 - We end up with three subarrays, size
 - 1, (*n*-1)/2, (*n*-1)/2
 - Combined cost of splits = $n + n 1 = 2n 1 = \Theta(n)$

Intuition for the Average Case

 Suppose, we alternate lucky and unlucky cases to get an average behavior

 $L(n) = 2U(n/2) + \Theta(n)$ lucky

 $U(n) = L(n-1) + \Theta(n)$ unlucky

we consequently get

$$L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$$

$$= 2L(n/2-1) + \Theta(n)$$

 $= \Theta(n \log n)$

The combination of good and bad splits would result in $T(n) = O(n \lg n)$, but with slightly larger constant hidden by the O-notation.

Randomized Quicksort

- An algorithm is *randomized* if its behavior is determined not only by the input but also by values produced by a *random-number generator*.
- Exchange A[r] with an element chosen at random from A[p...r] in Partition.
- This ensures that the pivot element is equally likely to be any of input elements.
- We can sometimes add randomization to an algorithm in order to <u>obtain good average-case</u> performance over all inputs.

Randomized Quicksort

Randomized-Partition(A, p, r)

- 1. $i \leftarrow Random(p, r)$
- 2. exchange $A[r] \leftrightarrow A[i]$
- 3. return Partition(A, p, r)

Randomized-Quicksort(A, p, r)

- 1. **if** p < r
- 2. then $q \leftarrow \text{Randomized-Partition}(A, p, r)$
- 3. **Randomized-Quicksort**(A, p, q-1)
- 4. **Randomized-Quicksort**(A, q+1, r)

Wap

Review: Analyzing Quicksort

- What will be the worst case for the algorithm?
 Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is balanced

Summary: Quicksort

- In worst-case, efficiency is $\Theta(n^2)$
 - But easy to avoid the worst-case
- On average, efficiency is $\Theta(n \lg n)$
- Better space-complexity than mergesort.
- In practice, runs fast and widely used